AD-760 437

CONTUR-A FORTRAN IV SUBROUTINE FOR THE PLOTTING OF CONTOUR LINES

George W. Hartwig, Jr.

Ballistic Research Laboratories

Prepared for:

Army Material Command
March 1973

**DISTRIBUTED BY:** 



National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151 287092 GE

# BRL

AD

**MEMORANDUM REPORT NO. 2282** 

CONTUR-A FORTRAN IV SUBROUTINE FOR THE PLOTTING OF CONTOUR LINES.

by

George W. Hartwig, Jr.



March 1973

Approved for public release; distribution unlimited.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U 5 Department of Commerce
Springfield VA 22151

USA BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314.



The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indersement of any commercial product.

| Security Classification                                                                                        |                                       |                 |                                   |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|-----------------------------------|
| DOCUMENT CONT                                                                                                  |                                       |                 |                                   |
| (Security classification of title, body of abstract and indexing a  1. ORIGINATING ACTIVITY (Corporate author) | nnetation must be e                   |                 | overall report to classified)     |
| Ballistic Research Laboratories                                                                                |                                       | Unclass         |                                   |
| Applied Mathematics Laboratory                                                                                 |                                       | 25. SHOUP       |                                   |
| ATTN: AMXBR-AM                                                                                                 |                                       |                 |                                   |
| 3. REPORT TITLE                                                                                                |                                       | L               |                                   |
| "CONTUR - A FORTRAN IV Subroutine for the                                                                      | Plotting of                           | Contour L       | ines."                            |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
| 4. DESCRIPTIVE NOTES (Type of report and inclusive dates)                                                      |                                       |                 |                                   |
| 9- AUTHORIS) (Firet name, middle initial, last name)                                                           |                                       |                 | <del></del>                       |
|                                                                                                                |                                       |                 |                                   |
| George W. Hartwig, Jr.                                                                                         |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
| 6 REPORT DATE                                                                                                  | 74 TOTAL NO. OF                       | PAGES           | 78. NO OF REPS                    |
| March 1973                                                                                                     | 37.3                                  | 5               | l;                                |
| M. CONTRACT OR GRANT NJ.                                                                                       | M. ORIGINATOR'S                       | REPORT NUM      | DER(S)                            |
| 4 manual 1 mm (23 00 A 2 L 7)                                                                                  | BRI. MEMORA                           | NDUM REPO       | RT NO. 2282                       |
| B. PROJECT NO. 1T161107A14B                                                                                    | DIG MENOW                             | THE THE PART OF |                                   |
| c.                                                                                                             | SO. OTHER REPOR                       | T NOIS (Any of  | ther numbers that mry be assisted |
|                                                                                                                | this report)                          |                 | , 47 200, 310                     |
| 4                                                                                                              |                                       |                 |                                   |
| 10. DISTRIBUTION STATEMENT                                                                                     | · · · · · · · · · · · · · · · · · · · |                 | <del></del>                       |
| American Committee Control Mark (No. 1)                                                                        | 1:                                    |                 |                                   |
| Approved for public release; distribution u                                                                    | milimited.                            |                 |                                   |
| II SUPPLEMENTARY NOTES                                                                                         | 12. SPONSORING N                      |                 | W. * v                            |
| I SUFFERNIANT NUISE                                                                                            | U.S. Army                             |                 |                                   |
|                                                                                                                | 5001 Eiser                            |                 |                                   |
|                                                                                                                | Alexandria                            | , Virgini.      | a 22304                           |
| 18 ABSTRACT                                                                                                    |                                       |                 |                                   |
| In performing engineering or scientifi                                                                         | e data eneli                          | eis on ac       | multations it from met            |
| th performing engineering or scientific lecomes necessary to examine data which is                             |                                       |                 |                                   |
| variables. One convenient method of displa                                                                     |                                       |                 |                                   |
| plots. This report describes an efficient                                                                      |                                       |                 |                                   |
| and the implementation of this algorithm as                                                                    |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
| •                                                                                                              |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                |                                       |                 | •                                 |
|                                                                                                                |                                       |                 |                                   |
|                                                                                                                | _                                     |                 |                                   |
| DD 190 1473 State 19 19 190 190 1 1 1 1 1 1 1 1 1 1 1 1 1                                                      | MCM 10                                |                 |                                   |

Unclassified Security Classification

1 Unclassified

| Security Classification            |      |    |         |        |      |        |  |       |  |
|------------------------------------|------|----|---------|--------|------|--------|--|-------|--|
| 14. KEY WORDS                      |      |    |         | LINKA  |      | LINK B |  | LINKC |  |
|                                    | ROLE | WT | ROLE    | WT     | ROLE | WT     |  |       |  |
|                                    | 1    |    |         |        | ŀ    |        |  |       |  |
| FORTRAN IV Subroutine              |      |    |         | ļ .    | 1    | ł      |  |       |  |
| Contour Lines                      |      |    | ŀ       |        |      | 1      |  |       |  |
| Calcomp Plots<br>Computer Graphics | 1    |    | ĺ       | Į.     |      |        |  |       |  |
| domputer draphice                  |      |    | 1       |        |      |        |  |       |  |
|                                    |      | ļ  |         |        | 1    |        |  |       |  |
|                                    | ł    | 1  | ļ       |        |      |        |  |       |  |
|                                    |      |    | į .     | l      | ļ    | i      |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    | 1    |    |         | ļ      |      |        |  |       |  |
| <u> </u>                           |      |    | l       |        | j    |        |  |       |  |
|                                    |      |    | 1       |        | 1    |        |  |       |  |
|                                    | 1    |    |         |        | ľ    |        |  |       |  |
|                                    |      |    | l       |        |      |        |  |       |  |
|                                    |      |    |         | }      | l    |        |  |       |  |
|                                    |      |    |         | }      | 1    |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    | i i     |        |      |        |  |       |  |
|                                    | 1    | 11 |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      | 1  | 1 1     |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    | ·    |    | 1       |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        | i i  |        |  |       |  |
| (00)                               |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    | 1    |    | Ì       |        |      |        |  |       |  |
|                                    | 1    |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        | }    |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    |         |        |      |        |  |       |  |
|                                    |      |    | الحصينا | أسروبو |      | _      |  |       |  |

## BALLISTIC RESEARCH LABORATORIES MEMORANDUM REPORT NO. 2282

March 1973

#### CONTUR-A FORTRAN IV SUBROUTINE FOR THE PLOTTING OF CONTOUR LINES

George W. Hartwig, Jr.

Applied Mathematics Laboratory

Approved for public release; distribution unlimited.

RDT&E PROJECT NO. 1T161102A14B

ABERDEEN PROVING GROUND, MARYLAND

#### BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2282

GWHartwig/cas Aberdeen Proving Ground, Md. March 1973

CONTUR-A FORTRAN IV SUBROUTINE FOR THE PLOTTING OF CONTOUR LINES

#### ABSTRACT

In performing engineering or scientific data analysis or computations it frequently becomes necessary to examine data which is a single valued function of two independent variables. One convenient method of displaying this type of data is with contour plots. This report describes an efficient algorithm for construction of contour lines and the implementation of this algorithm as a FORTRAN IV subroutine, CONTUR.

#### TABLE OF CONTENTS

|      |                                    | Page |
|------|------------------------------------|------|
|      | ABSTRACT                           | 3    |
|      | LIST OF ILLUSTRATIONS              | 7    |
| I.   | INTRODUCTION                       | 9    |
| II.  | THE ALGORITHM                      | 9    |
| III. | THE SUBROUTINE                     | 13   |
| IV.  | CONTUR INFUT VARIABLES             | 14   |
| ٧.   | PLTCCD INFUT VARIABLES             | 15   |
|      | APPENDICES                         | 17   |
|      | A. Examples of CONTUR Output       | 17   |
|      | B. Flow Chart of Subroutine CONTUR | 25   |
|      | C. Listing of Subroutine CONTUR    | 29   |
|      | DISTRIBUTION LIST                  | 33   |

### LIST OF ILLUSTRATIONS

| Figure       |                                                                                              | Page |
|--------------|----------------------------------------------------------------------------------------------|------|
| 1.           | A Typical Cell                                                                               |      |
| 2.           | The Interpolation Scheme                                                                     | 11   |
| 3.           | Error Condition. 2                                                                           |      |
| 4.           | Error Condition 3                                                                            | 12   |
| A-1.         | 3-D Plot of Z = SIN $(x + y)/(1 + (x - y)^2)$                                                | 18   |
| A-2.         | Contours of $Z = SIN(x + y)/(1 + (x - y)^2)$                                                 | 19   |
| A-3.         | 3-D Plot of Experimental Data                                                                | 20   |
| A-4.         | Contours of Experimental Data                                                                | 21   |
| <b>A-</b> 5. | 3-D Plot of Z = $ SIN(\sqrt{x^2 + y^2})/\sqrt{x^2 + y^2} $                                   | 22   |
| <b>A-</b> 6. | Dense Grid Contours of Z = $  SIN(\sqrt{x^2 + y^2})/\sqrt{x^2 + y^2} $                       | 23   |
| A-7.         | Course Grid Contours of Z = $ SD((\sqrt{\frac{2}{x^2 + y^2}})/(\sqrt{\frac{2}{x^2 + y^2}}) $ | 24   |

#### I. INTRODUCTION

In performing engineering or scientific data analysis it frequently becomes necessary to examine data which is a single valued function of two independent variables. A common and useful technique for displaying such data is through the use of contour plots. When three independent variables are involved any method of graphic display is cumbersome, but the plotting of contours in two dimensions for several values of the third independent variable may be the most practical alternative.

Organizations heavily involved in scientific computation utilizing digital computers frequently need to reduce results into an easily comprehendable form such as contour plots. Accordingly, it is highly desirable that an easy to use subroutine for contour plotting be available for the organization's computer users. CONTUR is such a subroutine, written in FORTRAN IV, and hence, is compatible with many digital computers in use today. The subroutine described herein was designed to work in conjunction with the California Computer Products, model 780 digital, incremental plotting system and the associated plotting subroutines in use at BRL. However, with simple modifications, CONTUR may be used with other forms of graphic display equipment.

#### II. ALGORITHM

The data for which contours are to be drawn is assumed to be a discrete tabulation of the single valued function

$$\mathbf{Z} = \mathbf{f}(\mathbf{x}, \mathbf{y}) \tag{1}$$

for x, y, in the range over which contours are desired. For a fixed Z,  $Z=Z_0$ , Eq. (1) may be written

$$Y = g(x, z_0). (2)$$

In this form the curve is called a contour and in general a different contour would occur for each value of  $Z_{\rm o}$ . Usually the function, f(x,y) is not known, the data arising either from experiment or by numerical approximation techniques. Hence, the explicit expression as a function of x and  $Z_{\rm o}$ , Eq. (2), is not available and a numerical procedure for determining the contours is necessary.

The algorithm described below represents a significant simplification of the algorithm described by James Downing [1].

The algorithm is derived by focusing attention on four adjacent data points  $Z_{i,j}$ ,  $Z_{i+1,j}$ ,  $Z_{i,j+1}$  and  $Z_{i+1,j+1}$  where the coresponding independent variables have the values  $(X_i, Y_j)$ ,  $(X_{i+1}, Y_i)$  etc. Assuming the data contains I points in the x direction and J points in the Y direction, the algorithm must be applied to N = (I-1)(J-1) cells.

Within such a cell, Figure 1, the center point is located and assigned a Z value equal to the average of the four Z values at the corners. These five points are then connected with line segments which are in turn numbered one through eight in a clockwise direction.



Figure 1. A Typical Cell.

Each segment is then tested to see if the required contour intersects with it, in the following manner. Starting with segment one, the contour value  $\mathbf{Z}_{\mathbf{O}}$  is subtracted from the end points.

$$T_1 = Z_{i,j} - Z_0$$

$$T_2 = Z_{i+1,j} - Z_0$$
(3)

If the quantity

$$\Delta = T_1 \cdot T_2 \tag{4}$$

is greater than zero, the entire segment is either above or below  $Z_o$ , if  $\Delta$  equals zero, either  $Z_{i,j}$  or  $Z_{i+1,j}$  is equal to  $Z_o$ , and if  $\Delta$  is less than zero the contour intersects the segment. In this last case the point of intersection,  $x_o$  is found by linear interpolation (see Figure 2) with  $x_o$  given by

$$x_0 = (Z_0 - Z_{i,j})(x_{i+1} - x_i)/(Z_{i+1,j} - Z_{i,j}) + x_i.$$
 (5)

The x and y values of this intersection are then stored in temporary arrays PX and PY.



Figure 2. The Interpolation Scheme.

The procedure is then repeated for segments two through eight. When segment eight is completed, the points stored in PX and PY are plotted and the next set of points are considered.

Before the ordered pairs (PX, FY) can be plotted successfully there are several conditions which must be tested for and if present, properly handled. (1) If all four of the cell's corner points are equal to Z<sub>o</sub>, no points should be plotted. (2) When the contour intersects segment eight, the PX and PY arrays must be reordered. The reason for this becomes obvious when one remembers that the segments are tested in a clockwise direction. For instance, assume CONTUR finds intersections on segments one, seven and eight. Plotting these points as originally stored would result in an extraneous line being drawn. See Figure 3. By simply rearranging the points so that they are stored seven, eight, one, the correct contour is drawn.



Figure 3. Error Condition 2.

(3) Provision is also made for the case where two contours of the same value pass through the cell. This occurs only when two opposite Z values are greater than  $Z_0$  and the other two points are less than  $Z_0$ . By noting if the center point, Z2, is greater than or less than  $Z_0$ , the paths taken by the contours are specifically known and are plotted as a special case. See Figure 4.



Figure 4. Error Condition 3.

#### III. THE SUBROUTINE

CONTUR is accessed through the statement

CALL CONTUR (Z, X, Y, IS, IY, DZ, NZ, IZ).

Z,X,Y are the arrays containing the values  $T_{i,j}$ ,  $X_i$  and  $Y_j$ , respectively. IX and IY are the number of points in the X dimension and Y dimension. The subroutine requires that Z be of dimensions (IZ,IY). DZ(NZ) is a one dimensional array containing the Z values at which contours are desired. NZ is the number of these values. The declared number of rows in the Z array is IZ.

Since the subroutine uses just four data points at a time, requiring no knowledge of where it has been or there it is going, enormous amounts of data can be handled by reloading the Z array and calling CONTUR several times with different portions of the data.

The computer time required by CONTUR depends on the size of the % array, the number of values at which contours are desired and the smoothness or irregularity of the data, with time increasing for large arrays, large numbers of contour values and irregular data. For some typical times see the examples of contour output.

In order to keep the subroutine as efficient and machine independent as possible, no labeling of contours is done, nor are any borders or titles plotted in CONTUR. The user must initialize the plot routines and set scales prior to calling CONTUR. PLTCCD is a predefined subroutine on the Ballistic Research Laboratories BRLESC computers that generates input data for the Cal Comp 780 digital, incremental plotting system, and must be replaced for use of CONTUR on other computer systems.

BRLESC users should note that the positioning on the plotter page and scales used by GONTUR are determined by the latest reference to PLTCCS.

[1] Thus, it may be necessary to reset the plotting scales before calling CONTUR.

#### IV. CONTUR INPUT VARIABLES

| Z(IZ,IY) | • | is a two dimensional array containing the functional values of the data. |
|----------|---|--------------------------------------------------------------------------|
| X(IX)    | - | is a one dimensional array containing the values                         |

Y(IY) - is a one dimensional array containing the values of the other independent variable.

of one of the independent variables.

IX - is the number of elements in the X array.

IY - is the number of elements in the Y array.

DZ(NZ) - is a one dimensional array containing the ? values at which contours are desired.

NZ - is the number of elements in the NZ array.

IZ - the number of declared rows in the 7 array.

#### V. PLTCCD INPUT VARIABLES

N=1,L=0 - signifies that a line plot is to be drawn.

PX(I), PY(J)- are arrays containing the X and Y coordinates to be plotted. The First point plotted is Px(I), PY(J).

K - is the number of data pairs to be plotted

M=0 - causes the subroutine to start a new curve with the point (PX(I), PY(J)).

M=1 - causes the subroutine to continue the curve plotted by the previous PLTCCD entry.

#### REFERENCES

- Downing, James A., "The Automatic Construction of Contour Plots with Applications to Numerical Analysis Research," The University of Texas Computation Center, Austin, Texas, January 1966.
- 2. Coleman, Monte W., Lanahan, John V., "BRLESC FORTRAN Plotting Subroutines," ARDC Technical Report No. 6. July 1970.
- 3. Nagy, Nicholas J. (III), "The Graphical Representation of Two Variable Data", Los Alamos Scientific Laboratory, Report No. LA-4796, November 1971.
- 4. Lintner, M. A., "Proj-Algorithm and Computer Programs for the Hidden Line Problem for Single Valued Surfaces", Idaho Nuclear Corporation, December 1969.

#### APPENDIX A

#### Examples of CONTUR Output

Figure A-1 is a three dimensional graph of the function

$$Z = SIN (x + y)/(1 + (x - y)^2)$$
 A-1

as plotted by the subroutine GRAF3D<sup>(3)</sup>. Although this plot is interesting and demonstrates general trends, it is virtually impossible to retrieve any useful quantitative information from it. Figure A-2 is a contour plot as drawn by CONTUR of the same data. The contour lines are at values of .1, .4, .6, and .9. The Z array contains 3600 points and CONTUR required 14.4 seconds on the BRLESC II computer to generate the curves.

Figures A-3 and A-4 represent experimental data. Again the contour plot is the more analytically useful, although not as esthetically pleasing as the 3-D plot. The PRO1 subroutine (4) was used in this case to generate the three dimensional plot.

Figures A-5,6,7 are included to demonstrate the results of allowing the data gride to become too goarse. Figure A-5 is the 3-D representation of

$$Z = |SIN(\sqrt{x^2 + y^2})/(\sqrt{x^2 + y^2})|$$
 -20 \le x, y \le 20.

Both Figures A-6 and A-7 are contour plots of the above function with contour lines drawn at Z values of .1, .4, .6, and .9. In Figure A-6 the grid contains 10000 points and the representation is accurate. The grid in Figure A-7 contains only 2500 points and the interpolation scheme is no longer sufficiently accurate to portray the function correctly. The BRLESC I computer required 60.6 seconds to generate A-6 and 19.2 seconds for A-7.



A-1. 3-D Plot of ? = SIN  $(x + y)/(1 + (x - y)^{?})$ 



A-2. Contours of  $Z = SIN(x + y)^2$ 



A-3. 3-D Plot of Experimental Data



A-4. Contours of Experimental Data





A-6. Dense Grid Contours of Z =  $|8D| (\sqrt{x^2 + y^2})/(x^2 + y^2)|$ 



A-7. Coarse Grid Contours of Z = | SIN  $(\sqrt{\frac{2}{x^2 + y^2}})/\sqrt{\frac{2}{x^2 + y^2}}$ 









```
SUBROUTINE CONTUR (Z, X, Y, IX, IY, DZ, NZ, IZ)
                                                                            CONTR
                                                                            CONTR
                                                                                   2
C
      DIMENSICA X(IX),Y(IY),Z(IZ,IY),PX(8),PY(8),KCHK(8),DZ(NZ)
                                                                            CONTR
                                                                                   3
                                                                            CUNTR
C
                                                                                   5
   THIS SUBROUTINE PLOTS NZ CONTOURS AT DZ VALUES.
                                                                            CONTR
C
                                                                            CONTR
C
   X AND Y ARE ONE DIMENSIONAL ARRAYS OF LENGTH IX AND IY, RESPECTIVELY.CONTR
                                                                                   7
С
C
                                                                                   8
                                                                            CONTR
                                                                                   9
C
   Z IS A TWO DIMENSIONAL ARRAY OF SIZE (IX, IY).
                                                                            CONTR 10
C
   DZ IS A ONE DIMENSIONAL ARRAY OF LENGTH NZ IN WHICH THE Z VALUES AT
C
                                                                            CONTR 11
                                                                            CONTR 12
C
     WHICH CONTOURS ARE DESIRED ARE PLACED.
                                                                            CONTR 13
C
C
   THIS VERSION OF CONTUR WAS COMPLETED IN FEBRUARY 1973.
                                                                            CONTR 14
C
                                                                            CONTR 15
                                                                            CONTR 16
      10=0
                                                                            CONTR 17
      NNX = IX - 1
                                                                            CONTR 18
      NNY = IY - 1
                                                                            CONTR 19
      DO 2 J=1,NNY
                                                                            CONTR 20
      DO 1 I=1,NNX
                                                                            CONTR 21
      DO 100 ICONT=1.NZ
                                                                            CONTR 22
      ZO=DZ(ICUNT)
                                                                            CONTR 23
C
   IF ALL FOUR DATA POINTS ARE EQUAL TO ZO, DO NOT PLOT ANY LINES FOR
                                                                            CONTR 24
C
                                                                            CONTR 25
C
     THIS CELL.
                                                                            CONTR 26
C
      IF(Z(I, J).EQ.ZC.AND.Z(I+1,J).EQ.ZO.AND.Z(I,J+1).EQ.ZO.AND.
                                                                            CONTR 27
     12(1+1,J+1).EQ.ZC) GOTO 100
                                                                            CONTR 28
                                                                            CONTR 29
C
C
   TEST SEGMENT 1 FOR AN INTERSECTION WITH THE CONTOUR LINE.
                                                                            CONTR 30
                                                                            CONTR 31
C
                                                                            CONTR 32
      T1=Z([,J)-Z0
      T2=Z(I+1,J)-Z0
                                                                            CONTR 33
                                                                            CONTR 34
      D=T1*T2
                                                                            CONTR 35
      IF(D)10,11,19
                                                                            CONTR 36
   10 IC=IC+1
                                                                            CONTR 37
      PX(IC) = -I1*(X(I+1)-X(I))/(Z(I+1,J)-Z(I,J))+X(I)
                                                                            CONTR 38
      PY(IC)=Y(J)
                                                                            CONTR 39
      KCHK(1)=1
                                                                            CONTR 40
      GCTO 19
                                                                            CONTR 41
   11 IF(T1.NF.3.0) GOTG 13
                                                                            CONTR 42
      IC = IC + I
                                                                            CONTR 43
      PX(IC)=X(I)
                                                                            CONTR 44
      PY(IC)=Y(J)
                                                                            CONTR 45
      KCHK(1)=1
                                                                            CONTR 46
      IF(T2)19,13,19
                                                                            CONTR 47
   13 IC=IC+1
                                                                            CONTR 48
      PX(IC) - X(I+1)
                                                                            CONTR 49
      PY(IC)=Y(J)
                                                                            CONTR 50
      KCHK(1)=1
                                                                            CONTR 51
C
                                                                            CONTR 52
   TEST SEGMENT 2 FOR AN INTERSECTION WITH THE CONTOUR LINE.
C
C
                                                                            CONTR 53
   19 T3=.25*(Z(I,J)+Z(I+1,J)+Z(I,J+1)+Z(I+1,J+1))-Z0
                                                                            CONTR 54
                                                                            CONTR 55
      D=11+13
                                                                            CONTR 56
      X2=(X(I+1)+X(I))*.5
      Y2=(Y(J+1)+Y(J))*.5
                                                                            CONTR 57
      Z2=T3+Z0
                                                                            CONTR 58
                                                                            CONTR 59
      IF(D)20,23,29
   20 IC=IC+1
                                                                            CONTR 60
```

```
CONTR 61
      PX(IC) = -T1*(X2-X(1))/(Z2-Z(1,J))+X(1)
                                                                                CONTR 62
      PY([C) = -T1 * (Y2 - Y(J)) / (Z2 - Z(I, J)) + Y(J)
                                                                                CONTR 63
      KCHK(2)=1
                                                                                CONTR 64
      GCTC 29
   23 IF(T3.NE.D.O) GOTO 29
                                                                                CONTR 65
                                                                                CONTR 66
      IC = IC + 1
                                                                                CONTR 67
      PX(IC)=Y2
                                                                                CONTR 68
      PY(IC)=Y2
      KCHK(2)=1
                                                                                CONTR 69
C
                                                                                CONTR 70
   TEST SEGME IT 3 FOR AN INTERSECTION WITH THE CONTOUR LINE.
                                                                                CONTR 71
                                                                                CONTR 72
                                                                                CONTR 73
   29 T2=Z(1,J+1)-Z3
      D=T1*T2
                                                                                CONTR 74
                                                                                CONTR 75
      IF(D)30,33,39
   30 IC=IC+1
                                                                                CONTR 76
                                                                                CONTR 77
      PX(IC)=X(I)
                                                                                CONTR 78
      PY(IC) = -T1 + (Y(J+1) - Y(J)) / (Z(I,J+1) - Z(I,J)) + Y(J)
                                                                                CONTR 79
      KCHK(3)=1
                                                                                CONTR 80
      GOTO 39
                                                                                CONTR 81
   33 IF(T2.NF.D.C) GOTO 39
                                                                                CONTR 82
      IC = IC + 1
      PX(IC)=X(I)
                                                                                CONTR 83
      PY(1C)=Y(J+1)
                                                                                CONTR 84
      KCHK(3)=1
                                                                                CONTR 85
C
                                                                                CONTR 86
C
   TEST SEGMENT 4 FOR AN INTERSECTION WITH THE CONTOUR LINE.
                                                                                CONTR 87
C
                                                                                CONTR 88
   39 T1=Z(I,J+1)-Z0
                                                                                CONTR 89
                                                                                CONTR 90
      D=T1*T3
      IF(D)40,49,49
                                                                                CONTR 91
   40 IC=IC+1
                                                                                CONTR 92
      PX(IC) = -T1 + (X2 - X(I)) / (Z2 - Z(I, J+1)) + X(I)
                                                                                CONTR 93
      PY(IC) = -I1 * (Y2 - Y(J+1)) / (Z2 - Z(I, J+1)) + Y(J+1)
                                                                                CONTR 94
                                                                                CONTR 95
      KCHK(4)=1
C
                                                                                CONTR 96
C
   TEST SEGMENT 5 . .
                                                                                CONTR 97
                                                                                CONTR 98
   49 T2=Z(I+1,J+1)-Z?
                                                                               CONTR 99
      D=T1#T2
                                                                               CONTR100
      IF(D)50,53,59
                                                                               CONTRICI
   50 IC=IC+1
                                                                               CONTRID2
      PX(IC) = -T1 + (X(I+1) - X(I)) / (Z(I+1,J+1) - Z(I,J+1)) + X(I)
                                                                               CONTR103
      PY(10)=Y(J+1)
                                                                               CONTRI04
      KCHK(5)=1
                                                                               CONTRIC5
      GCTO 59
                                                                               CONTRIC6
   53 IF(T2.NF.O.J) GOTO 59
                                                                               CONTR107
      IC=1C+1
                                                                               CONTR108
                                                                               CONTR109
      PX(IC)=X(I+1)
      PY(IC)=Y(J+1)
                                                                               CONTR110
      KCHK(5)=1
                                                                               CONTR111
C
                                                                               CONTR112
   TEST SEGMENT 6
                                                                               CONTR113
                                                                               CONTR114
   59. D=T2*T3
                                                                               CONTR115
      IF(0)60,69,69
                                                                               CONTR116
   60 IC=IC+1
                                                                               CONTR117
      PX(IC) = -72*(X2-X(I+1))/(Z2-Z(I+1,J+1))+X(I+1)
                                                                               CONTR118
      PY(IC) = -\Gamma 2*(Y2-Y(J+1))/(Z2-Z(I+1,J+1))+Y(J+1)
                                                                               CONTR119
```

CONTR120

K(HK(6)=1

```
CONTR121
C
   TEST SEGMENT 7
                                                                             CONTR122
                                                                             CONTR123
                                                                             CONTR124
   69 T1=T2
      T2=Z(I+1,J)-Z)
                                                                             CONTR125
                                                                             CONTR126
      D=T1*T2
      IF(D)70,79,79
                                                                             CONTR127
   70 IC=IC+1
                                                                             CONTR128
      PX(IC)=X(I+1)
                                                                             CONTR129
      PY(IC) = -\Gamma_1*(Y(J)-Y(J+1))/(Z(I+1,J)-Z(I+1,J+1))+Y(J+1)
                                                                             CCNTR130
      KCHK(7)=1
                                                                             CONTRI31
C
                                                                             CONTR132
C
   TEST SEGMENT 8
                                                                             CONTRI33
                                                                             CONTR134
   79 D=T2*T3
                                                                             CCNTR135
      IF(D)80,99,89
                                                                             CONTR136
   80 IC=IC+1
                                                                             CONTR137
      PX(IC) = -T3 + (X(I+1) - X2)/(Z(I+1,J) - Z2) + X2
                                                                             CCNTR138
      PY(IC) = -T3*(Y(J)-Y2)/(Z(I+1,J)-Z2)+Y2
                                                                             CONTR139
      KCHK(3)=1
                                                                             CONTR140
   89 IF(IC.GE.2) GOTO 90
                                                                             CONTR141
      GOTO 201
                                                                             CONTR142
C
                                                                             CONTR143
C
   THIS SECTION OF CODING CROERS THE DATA SO THAT NO CVERLAPPING OR
                                                                             CONTR144
C
     BACKTRACKING CCCURS DURING PLOTTING.
                                                                             CONTR145
C
                                                                             CONTR146
   90 IF(IC.GE.6) GOTO 300
                                                                             CONTR147
      IF(KCHK(8).NE.1) GOTC 200
                                                                             CONTR148
      DO 101 L=1.7
                                                                             CONTR149
      IF(KCHK(L).NE.1) GOTO 101
                                                                             CONTRISC
      IC = IC + 1
                                                                             CCNTR151
      PX(IC)=PX(1)
                                                                             CCNTR152
      PY(IC)=PY(1)
                                                                             CONTR153
      IC = IC - 1
                                                                             CONTR154
      DO 102 M=1.1C
                                                                             CONTR155
      PX(M)=PX(M+1)
                                                                             CONTR156
  102 PY(M)=PY(M+1)
                                                                             CONTRIST
      IF((MCD(L,2).EQ.1).AND.KCHK(L).EQ.1) GOTO 200
                                                                             CONTR158
  101 CONTINUE
                                                                             CONTR159
C
                                                                             CONTR160
C
   PLOT DATA FOR THE USUAL CELL.
                                                                             CONTR161
C
                                                                             CONTR162
  200 CALL PLTCCD (1,0,PX(1),PY(1),IC,0)
                                                                             CONTR163
      GOTO 201
                                                                             CONTR164
C
                                                                             CONTR165
C
   THIS SECTION OF CODING DOES THE ORDERING AND PLOTTING IF 2 CONTOUR
                                                                             CONTR166
C
     LINES PASS THROUGH THE CELL
                                                                             CONTRI67
                                                                             CCNTR168
  300 IF(Z(I,J).GT.ZO.AND.Z(I+1,J+1).GT.O.O) GOTO 301
                                                                             CCNTR169
      IF(Z2.GT.Z0) GOTO 303
                                                                             CONTR170
  302 N=IC+1
                                                                             CONTR171
      FX(N) = PX(1)
                                                                             CONTR172
      PY(N)=PY(1)
                                                                             CONTR173
      CALL PLTCCD (1,0,PX(5),PY(5),3,0)
                                                                             CONTR174
      CALL PLTCCD (1,0,PX(2),PY(2),3,0)
                                                                             CONTR175
      GCTO 310
                                                                             CONTR176
  303 CALL PLTCCD (1,0,PX(1),PY(1),3,0)
                                                                             CONTR177
      CALL PLICCO (1,C,PX(4),PY(4),3,C)
                                                                             CONTR178
      GOTO 313
                                                                             CONTR179
  301 IF(Z2.GT.ZC) GOTO 302
                                                                             CONTR180
```

|                                             | CONTR181 |
|---------------------------------------------|----------|
| GOTO 303                                    |          |
|                                             | CONTR182 |
| 310 CONTINUE                                | CCNTR183 |
| C CLEAR WORKING ARRAYS AND INITIALIZE FLAGS | CCNTR184 |
|                                             | CONTR135 |
| C 201 16-6                                  | CONTR186 |
| 201 IC=0                                    | CONTR187 |
| DC 8 MN=1,8                                 | 7.7      |
| PX(MN) = 0.                                 | CONTR188 |
| PY(M'1)=2.                                  | CONTR189 |
|                                             | CONTR190 |
| 8 KCHK(MN)=C                                |          |
| 100 CONTINUE                                | CONTR191 |
| 1 CONTINUE                                  | CONTR192 |
| • • • • • • • • • • • • • • • • • • • •     | CONTR193 |
| 2 CONTINUE                                  | CONTR194 |
| RETURN                                      |          |
| END                                         | CONTR195 |
| END                                         |          |